
DyPy: A Python Library for Simulating Matrix-Form Games
Anjalika Nande∗1, Andrew Ferdowsian3, Eric Lubin4, Erez Yoeli5, and Martin Nowak2

1Department of Physics, Harvard University
2Departments of Mathematics and Organismic and Evolutionary Biology, Harvard

University
3Department of Economics, Princeton University

4Department of Computer Science, Massachusetts Institute of Technology
5Sloan School of Management, Massachusetts Institute of Technology

Abstract
Evolutionary Game Theory (EGT) simulations are used to model populations undergoing biological and
cultural evolution in a range of fields, from biology to economics to linguistics. In this paper we present
DyPy, an open source Python package that can perform evolutionary simulations for any matrix form
game for three common evolutionary dynamics: Moran, Wright-Fisher and Replicator. We discuss the
basic components of this package and illustrate how it can be used to run a variety of simulations. Our
package allows a user to run such simulations fairly easily without much prior Python knowledge. We
hope that this will be a great asset to researchers in a number of different fields.

Key-words: evolutionary game theory, python, matrix-form games, group selection, frequency biased imi-
tation

Introduction
Evolutionary Game Theory (EGT) is used to model populations undergoing Darwinian or cultural evolution;
it has been used by researchers in biology, economics, sociology, anthropology, linguistics, and philosophy to
explore topics such as multicellularity, human cooperation, and the evolution of grammar (Smith and Price,
1973; Smith, 1982; Matsui, 1996; Traulsen et al., 2010; Nowak, 2006a; Jaeger, 2008; Bruin, 2005; Friedman,
1998; Johnson et al., 2003). While researchers can usually solve the evolutionary dynamics of simple games
analytically, for many games, analytic solutions are difficult or impossible. In such cases, researchers typically
rely on numerical simulations to explore a game’s dynamics (for a review, see Nowak, 2006a).

In this paper we present DyPy, an open source Python package that can be used to easily run a wide range
of useful EGT simulations which have up until now required duplicative and time-and-energy intensive coding
on the part of researchers. The package provides functionality needed for most simple EGT simulations like
permitting users to analyze any matrix-form games, regardless of the number of players and strategies, and
regardless of whether the game is symmetric. Users can choose from three of the most commonly-used
evolutionary dynamics: Moran, Wright-Fisher and Replicator. They can specify whether the population
is subject only to individual-level selection, or whether there is also group-level selection. And, they can
account for frequency biased imitation. Users can analyze a single run of the evolutionary dynamic, or many
runs. They can also vary model parameters along a range to explore the impact of the choice of parameter
values on the dynamics of their game. The results of any simulation can be saved as a dataset containing
the frequency of strategies over time and their payoffs. These results can also be presented visually using a
number of graphing functions. Most simulations require just 20-100 lines of code, and can be written with
little prior programming experience. DyPy has been parallelized and optimized to ensure simulations run
fast. To the best of our knowledge, DyPy is unique in its scope and ease of implementation.

∗Corresponding author. Email: anande01@g.harvard.edu

1

ar
X

iv
:2

00
7.

13
81

5v
1

 [
q-

bi
o.

PE
]

 2
7

Ju
l 2

02
0

DyPy Availability
DyPy is an open source Python software library that is hosted on Github at
https://github.com/anjalika-nande/dynamics sim. It runs on Python 3.0 or higher. Detailed documentation
for each command in the library, sample code for exemplary simulations and a Wiki is provided in the Github
repository. Improvements through pull requests and suggestions for additional functionality are encouraged.

DyPy Output
The result of each simulation is a data set consisting of the frequencies of strategies over time along with
their associated payoffs. For ease of interpretation, these results can be presented visually using a number
of different graphing options. These range from a 2D plot of the results of a single simulation to 3D wire
and contour plots that are the result of varying two parameters over many iterations of a simulation (see
Supporting Information for details about the 3D plotting options). All of these graphs can be saved in any
file format supported by matplotlib, the default is .png.

Defining a Game
There are two main components to an EGT simulation: the game that is being played and the dynamics
through which strategies evolve. DyPy allows the user to create any desired game by subclassing the Game
class and defining the payoff matrix appropriately. While creating the game, the user can also define states
(i.e. the distribution of players playing each strategy) of interest–usually this is done to analyze possible
equilibria of the game, which have been identified analytically.

To illustrate how this is done and to showcase the library’s functionality, we reproduce some of the well-
known results from literature related to the evolution of cooperation throughout this paper. We start by
defining the Prisoners’ Dilemma.

Prisoners’ Dilemma

Cooperation is seen in biological systems at all scales; from the formation of multicellularity to large
scale human cooperation (Michod and Roze, 2001; Nowak, 2006b). However, cooperation which involves a
personal cost for the benefit of others can always be exploited by defectors. This phenomenon is captured
by the well-known two-player game, the Prisoners’ Dilemma (Axelrod, 1980; Smith, 1982; Nowak, 2006a).
The payoff matrix associated with the game is,

(C D

C R S
D T P

)
(1)

where T > R > P > S.
Games like this are typically solved by finding the Nash equilibria of the game, which are strategy profiles

such that no player can benefit by unilaterally deviating. The only Nash equilibrium of this game is for both
players to defect, even though if both cooperated, they would receive a higher payoff.

In evolutionary game theory, there is an entire population of players, who, in each round, are assigned
to play a game against each other–the details of how they are assigned to do so depend on the particular
dynamic. The most basic equilibrium concept in EGT is the Evolutionary Stable Strategy (ESS). A strategy
is an ESS if, when everyone in the population plays this strategy, a mutant who plays another strategy will
receive lower payoffs and die out. ESS corresponds closely to the Nash equilibrium (indeed, all ESS must be
Nash equilibria, but not vice versa). Just as the only Nash Equilibrium of the Prisoners’ Dilemma is (D,D),
the only ESS of the Prisoners’ Dilemma is for everyone in the population to play D (Smith, 1982).

We will now use DyPy to simulate a population of players playing the Prisoners’ Dilemma to see that
natural selection favors defection. To do this, we first set up the game. This involves specifying the strategies,
equilibria and the payoff matrix associated with it. The following 16 lines of code are used to prepare the
game:

2

from games.game import SymmetricNPlayerGame

Class that defines the Prisoners’ Dilemma game.
class PrisonersDilemma(SymmetricNPlayerGame):

DEFAULT_PARAMS = dict(R=3,S=0,T=5,P=1,bias_strength=0)
List of strategies
STRATEGY_LABELS = (‘Cooperate’, ‘Defect’)
List of equilibria
EQUILIBRIA_LABELS=(‘Cooperation’, ‘Defection’)

def __init__(self,R,S,T,P,bias_strength):
Define the payoff matrix
payoff_matrix = ((R,S),(T,P))
super(PrisonersDilemma, self).__init__(payoff_matrix,1,bias_strength)

@classmethod
Function that defines the equilibria
def classify(cls, params, state, tolerance):

threshold = 1 - tolerance
if state[0][0] > threshold:

return 0 # Cooperate
elif state[0][1] > threshold:

return 1 # Defect
else:

return super(PrisonersDilemma, cls).classify(params, state, tolerance)

The Prisoners’ Dilemma is a symmetric game, that is, all the players have the same strategies and payoffs.
So we use the SymmetricNPlayerGame subclass of the Game class.

The class method, ‘classify’ is used to identify states of interest, in this case, the state in which all players
cooperate, and the state in which all players defect. The classify command identifies whether the population
is “at” these states at the end of a round. Technically, it tests whether ‘1 - tolerance’ of the population is at
the state, where the ‘tolerance’ parameter is chosen by the user (see the SI for a more complicated example
that uses the parameters of the game to arrive at the desired tolerances). If the system is in a state other
than the ones defined by the user, the classify command assigns the state as ‘Unclassified’. These states need
not be associated with pure strategies only and can include steady states consisting of mixed strategies.

Types of Simulations
Once the game is created, the user can choose between either stochastic (Moran, Wright-Fisher) or determin-
istic (Replicator) dynamics. The GameDynamicsWrapper and VariedGame classes take care of combining
the chosen game and dynamics and run the desired simulation for a given number of generations and pop-
ulation size. The user can also specify a ‘start state’ which gives the initial strategy frequencies (see SI for
details). It defaults to a random list of initial frequencies with the population divided approximately equally
amongst all the strategies. Table 1 describes some of the important classes in DyPy. We provide some
commonly used simulation methods in the package which are enumerated below along with examples.

A single simulation of the game’s dynamic
The ‘simulate’ method can be used when the user wishes to analyze the dynamics of strategies in a single
EGT simulation for a specified number of generations (number of updating steps in the entire population).
In both stochastic dynamics, the user can also specify a mutation rate, µ (see SI for more details). The result
is a graph of the dynamics of each players’ strategies over time. For example, we simulate the Prisoners’

3

Class Description

Game

Encapsulates the idea of the game that is to
be simulated. The user can create a subclass
of this class and define the game by specify-
ing the payoff matrix, number of players and
strategies along with the equilibria of interest.

Dynamics

Dynamics govern the update rules from one
generation to the next. We provide three com-
monly used dynamics: Moran, Wright-Fisher
and Replicator. The user can also define their
own.

GameDynamicsWrapper

A helper class that wraps a dynamics class
and a game class. It provides helper methods
for simulation with a fixed set of game and
dynamics parameters.

VariedGame

A helper class that wraps a dynamics class and
a game class. It provides helper methods for
simulation while varying one or more param-
eters.

Table 1: Brief description of important DyPy classes

Dilemma game using Moran dynamics in the absence of mutations. The output is a graph, Figure 1A. We
see that the dynamics converge to defection which is the Nash equilibrium. Example code:

from wrapper import GameDynamicsWrapper
from dynamics.moran import Moran
s = GameDynamicsWrapper(PrisonersDilemma,Moran,dynamics_kwargs={‘mu’:0})
s.simulate(num_gens=2000,pop_size=100,graph=dict(area=True,options=[‘smallfont’]))

We provide an example of using the deterministic Replicator dynamic in the Supplementary Information.

Multiple iterations of a simulation of the game’s dynamic
On many occasions we want to run a simulation multiple times in order to check the robustness of the
results in the presence of variations in the initial conditions and/or due to the inherent stochasticity of
the dynamics. The game may also have multiple equilibria, in which case the user might be interested in
the fraction of generations that the population spends in each. For these reasons, we provide the method
‘simulate many’ where multiple iterations of the simulation are run and the frequency of each resulting
equilibrium is returned. If the system is not within ‘tolerance’ of a state defined using the classify command,
the simulation returns ‘Unclassified’. When multiple simulations are performed, they are automatically
parallelized across all available cores.

We now use ‘simulate many’, and the stochastic Moran dynamic, to show that a population playing the
Prisoners’ Dilemma stabilizes at defection even in the presence of stochasticity.

from wrapper import GameDynamicsWrapper
from dynamics.moran import Moran
s = GameDynamicsWrapper(PrisonersDilemma,Moran)
s.simulate_many(num_iterations=100, num_gens=2000,pop_size=100,\
graph=dict(area=True, options=[‘smallfont’]))

This command returns a text output with the frequency of each equilibrium,

{‘Defection’:1.0}

4

A B

C

Figure 1: Simulation results for a population playing the Prisoners’ Dilemma using the three main methods
in DyPy. A) Evolution of strategies via the Moran process for 2000 generations. B) Evolution of strategies via the Moran
process for 2000 generations averaged over 100 iterations. C) The equilibrium proportion of strategies on varying the payoff T
in the Prisoners’ Dilemma under Moran dynamics. Each simulation was run for 4000 generations averaged over 100 iterations
per value of T (1, 2, . . . , 10). We used a population size of 100 for all the simulations with the payoffs in the Prisoners’ Dilemma
set to R = 3, S = 0, T = 5 and P = 1.

5

The simulation never returns ‘Unclassified’ and defection equilibrium is reached reliably during each
iteration. It also returns a graph (Figure 1B) which is an average over the iterations of the dynamics of
each players’ strategies over time. In the SI we provide an example where ‘simulate many’ is used for a game
(Repeated Prisoners’ Dilemma) that exhibits multiple stable equilibria.

Approximating the fixation probability
The ‘frac invasions’ method computes the fraction of iterations where a strategy introduced in a population,
dominates other strategies, after a specified number of generations. The user can define the amount of
prevalence needed for a strategy to be considered ‘dominating’ via the ‘tolerance’ parameter.

We include this method because it can be used to approximate the fixation probability for a strategy.
In a game with two strategies A and B, the fixation probability of A is the probability that it fixes in the
population when introduced in a population of only B players. This concept is used extensively in the field
of population genetics, for example, to study how a particular allele may fix in the population (Patwa and
Wahl, 2008; de Oliveira and Campos, 2004; Lambert, 2006).

The fixation probability for a strategy can be approximated by setting the tolerance = 0 and running
the simulation for an appropriate number of generations. This is to ensure that the simulation is run long
enough such that the strategy has either fixed in the population or the population has reached some other
equilibrium. A thorough investigation of the analytical, numerical and simulation methods to compute the
fixation probability is given in Hindersin et al. (2019). The techniques described can be used to decide the
length of the simulation. The following few lines of code can be used to approximate the fixation probability
for ‘Defect’ in the Prisoners’ Dilemma with tolerance set to 0,

from wrapper import GameDynamicsWrapper
from dynamics.moran import Moran
s = GameDynamicsWrapper(PrisonersDilemma,Moran)
s.frac_invasions(num_iterations = 1000, num_gens = 2000, \
pop_size = 100, strategy_indx = 1) # Index of strategy ‘Defect’

This returns a text output of the form :

‘Fraction of runs where the required strategy dominated the population = 0.79’

The fixation probabilities of the strategies in the Prisoners’ Dilemma can be analytically computed (Hin-
dersin et al. (2019)). For the payoffs and selection strength used in our simulation, the fixation probability
for ‘Defect’ is 0.8 which is in close agreement with the approximation obtained via the simulation.

Effect of varying parameters
We provide the ‘vary’ method to analyze the effect of varying one or more parameters associated with the
dynamics or with the game. For each value of the parameter(s) being varied, multiple iterations of the
simulation are run and the final frequency of each resulting equilibrium is recorded. The output is a graph
of these final frequencies as a function of the varied parameter(s). As an example we vary the payoff value
T (1, 2, . . . , 10) from the Prisoners’ Dilemma Game.

from wrapper import VariedGame
from dynamics.moran import Moran
s = VariedGame(PrisonersDilemma, Moran)
s.vary(game_kwargs={‘T’:[0,10,10]},num_gens=4000,\
num_iterations=100,graph=dict(area=True,options=[‘smallfont’]))

The output, Figure 1C shows the equilibrium proportion of strategies on varying T with fixed R = 3.
The game is a Prisoners’ Dilemma when T > R and hence, we see the dynamics converging to defection once
this is true.

In addition to EGT simulations in well-mixed populations with payoff-based learning we also include the
possibility to simulate effects of frequency biased imitation and group selection.

6

Frequency Biased Imitation
One of the motivations for using evolutionary dynamics is that humans learn or imitate, and that, cru-
cially, they preferentially learn or imitate successful strategies (M.Chudek et al., 2012; P.L.Harris and
K.H.Corriveau, 2011; G.Stenberg, 2009; B.Galef, 2008; K.Laland, 2011), just as in biological evolution, nat-
ural selection favors successful strategies. Thus, the dynamics we’ve focused on so far (Replicator, Wright-
Fisher, and Moran) can be used to describe learning and imitation in the same way they were used to
describe biological evolution.

However, humans are sometimes known to imitate common strategies, somewhat independently of
whether they are successful (R.Boyd and P.J.Richerson, 1985; Chudek et al., 2015). This is known as
frequency biased imitation. If the frequency bias is important, relative to the success bias, this can change
how a dynamic will behave, and where it will stabilize.

For these reasons, DyPy makes it possible to include frequency biased imitation when analyzing the
dynamics of a game. We incorporate frequency biased imitation by adding to the average payoff from playing
a strategy, a user-specified function of the strategy’s frequency: uFBIi (σ, σ′

1, . . . , σ
′
N) = ui(σ, σ′

1, . . . , σ
′
N)(1−

γ) + φ(σ)γ where ui(σ, σ′
1, . . . , σ

′
N) is player i’s average payoff from playing σ in a population when playing

opponents with the strategy set {σ′
1, . . . , σ

′
N}, γ is the relative strength of individual versus frequency biased

(conformist) imitation and φ(σ) is the user-specified function of σ’s frequency. This function defaults to the
commonly used function (W.Nakahashi, 2007),

φ(σ) =
(

xaσ∑M
j=1 x

a
j

)
× s (2)

where xσ is the frequency of strategy σ, the sum is over the frequencies of all M strategies that player i
can employ, s is a scaling factor and a is the ‘conformist’ parameter as defined by Nakahashi (W.Nakahashi,
2007). a = 1 is the default in the package. In the code we refer to s as the ‘bias scale’ and γ as the
‘bias strength’. This formalism is a more general version of that used in (Molleman et al., 2013), where the
effect of conformity is thought of as a coordination game.

Conformism in Prisoners’ Dilemma

Conformism is a social learning strategy where players learn strategies by imitating the majority (R.Boyd
and P.J.Richerson, 1985). Adding the effects of conformism to payoff-based learning considered so far can
help stabilize cooperation under certain conditions. We can simulate this system for a Prisoners’ Dilemma
Game via the VariedGame class and vary the strength of conformism to reproduce the results from (Molleman
et al., 2013). See SI for all the parameters used in the simulation.

from wrapper import VariedGame
from dynamics.wright_fisher import WrightFisher
s = VariedGame(PrisonersDilemma,WrightFisher)
s.vary(game_kwargs={‘bias_strength’:[0,1,10]},num_gens=100,num_iterations=100,\
parallelize=True,graph=dict(area=True,options=[‘smallfont’]))

In Figure 2A, as the strength of conformism increases, cooperation arises in the population. When the
learning is entirely conformist (γ = 1), the population converges to cooperation or defection solely depending
upon the initial state and so we see both strategies fixing ∼ 50% of the time.

Group Selection
Group selection is the idea that sometimes evolution occurs via natural selection acting at the level of a
group in addition to the individual level (Luo, 2014) which leads to favoring traits (strategies) that are
advantageous to the group as a whole. In the presence of such multilevel (group and individual) selection,
a games’ dynamics may no longer converge to the Nash equilibrium. For example, (Traulsen and Nowak,
2006) showed that cooperation is favored over defection under certain conditions in the presence of group
selection. With this in mind, we include tools to simulate such multilevel selection dynamics in DyPy.

7

Frequency Biased Imitation Group Selection
A B

Figure 2: Equilibrium proportion of strategies in the presence of frequency biased imitation and group selection.
Left: The proportion of times an equilibrium arises in the population while varying the strength of conformism in a Prisoners’
Dilemma game under Wright-Fisher dynamics. γ (bias strength) is varied from 0 (no conformism) to 1 (fully conformist
learning). Each simulation was run for 100 generations, averaged over 100 iterations per value of γ. Right: The proportion of
times an equilibrium arises in the population playing the Prisoners’ Dilemma (Wright-Fisher dynamics) on varying the number
of groups and group size keeping the total population fixed. The number of groups was varied from 1 to 25. At each group
number, the simulation was run for 100 generations, each averaged over a 100 iterations. The ‘rate’ of group selection was 0.2.
The population size was set to 100 for both simulations.

We use the formalism of group selection (Luo, 2014) that consists of a fixed number of groups m each
consisting of a fixed population of size n. At each time-step, the system can undergo either group or
individual-level selection via a Moran or Wright-Fisher process. The antagonism between the two levels of
selection is incorporated via a ‘rate’ which is the probability that group selection occurs at each time-step.
At the individual-level, reproduction occurs proportional to the individual fitness whereas, groups reproduce
proportional to their average fitness. Specifically, in the Moran process during each round of replication, one
individual (group) from the entire population is chosen for reproduction proportional to their fitness. On the
other hand, all individuals (groups) reproduce proportional to their fitness during each round of replication
in the Wright-Fisher process. The population (group) number is kept fixed by randomly selecting individuals
(groups) to die whenever reproduction occurs.

Group Selection in Prisoners’ Dilemma

Group selection is another mechanism by which cooperation might be stabilized in the population. Co-
operation can be favored in a population with multi-level selection (Luo, 2014; Traulsen and Nowak, 2006)
where competition between groups leads to cooperative behaviour under certain conditions. It has been
observed that smaller group sizes and large number of groups favor cooperators (Traulsen and Nowak, 2006;
Traulsen et al., 2008). We can simulate this in our package by using the VariedGame class and the Prisoners’
Dilemma game. This simulation varies the number of groups in the population keeping the total population
size fixed. We simulate it over multiple iterations for a fixed group number.

from wrapper import VariedGame
from dynamics.wright_fisher import WrightFisher
s = VariedGame(PrisonersDilemma, WrightFisher,dynamics_kwargs={‘rate’:0.2})
s.vary(dynamics_kwargs={‘number_groups’:[1,25,10]},num_gens=100,\
num_iterations=100,graph=dict(area=True,options=[‘smallfont’]))

The output is a graph (Figure 2B) showing the proportion of times a steady state is attained in the
simulation. As the number of groups increases and the group sizes decrease, we see cooperation arising in
the population.

8

A B

Figure 3: Evolution of strategies for a population (n=500) playing the Rock-Paper-Scissors game using the
Wright-Fisher dynamic. (A) Results of a single run of the simulation for 100 generations. (b) An average over 500 iterations
of the simulation in the presence of a 3% mutation rate. ‘simulate many’ also returns the text output, {‘Nash’: 1.0} (see SI for
how this is defined), implying that the Nash equilibrium was reached at the end of each iteration.

Rock-Paper-Scissors
So far we have analyzed dynamics in the Prisoners’ Dilemma where, in equilibrium, all players play D. We
now present, in brief, the dynamics of the Rock-Paper-Scissors (RPS) game, for which the only equilibrium
is mixed with one-third of players to play rock, one-third to play paper, and one-third to play scissors.
An analysis of the game’s dynamics reveals something interesting that the equilibrium analysis could not:
the population often cycles for some time, or even forever, depending on the relative size of the payoffs for
winning vs. losing a round of the game (Hoffman et al., 2015). We illustrate this in Figure 3 using a
stochastic process including mutations, and the ‘simulate’ and ‘simulate many’ methods (see SI for the code
and parameters used).

Discussion
This paper presents DyPy, a Python library for facilitating a variety of useful EGT simulations, alongside
a few simple examples to illustrate the library’s functionality. We hope DyPy will prove to be an asset
for experienced and novice researchers alike, as well as for teachers. We plan to continue to maintain and
expand DyPy’s functionality, for instance, by adding additional dynamics such as reinforcement learning and
Fudenberg and Imhof (2006)’s imitation process with rare mutations, as well as permitting structured pop-
ulations. We encourage users to contact us with suggestions for additional functionality, and also encourage
pull requests on GitHub so that users can help with the development of the library.

Author Contributions
DyPy was conceived by EY and EL. It was originally written by EL in Python 2 which was updated to
Python 3 along with additional functionality by AF. AN extended the package to include frequency biased
imitation, group selection and additional functionalities. AN led the writing of the manuscript under the
guidance of EY and MN. All authors contributed to the draft and gave their approval for publication.

9

Acknowledgments
We would like to thank Alexander Heyde, Christian Hilbe and Laura Schmid for helpful discussions and
edits regarding the manuscript. This work was funded partly by NIH DP5OD019851 (Anjalika Nande).

References
Robert Axelrod. Effective choice in the prisoner’s dilemma. The Journal of Conflict Resolution, 24(1):3–25,

1980. ISSN 00220027, 15528766. URL http://www.jstor.org/stable/173932.

E.Whiskin B.Galef. Use of social information by sodium- and protein-deficient rates: test of a prediction
(boyd and richerson 1988). Animal behaviour, 75:627–630, 2008.

Boudewijn de Bruin. Game theory in philosophy. Topoi, 24(2):197–208, Sep 2005. ISSN 1572-8749. doi:
10.1007/s11245-005-5055-3. URL https://doi.org/10.1007/s11245-005-5055-3.

M Chudek, M Muthukrishna, and J Henrich. Cultural evolution. In the Handbook of Evolutionary Psychology,
2nd Edition, 2015.

Viviane M. de Oliveira and Paulo R.A. Campos. Dynamics of fixation of advantageous mutations. Physica
A: Statistical Mechanics and its Applications, 337(3):546 – 554, 2004. ISSN 0378-4371. doi: https:
//doi.org/10.1016/j.physa.2004.02.007. URL http://www.sciencedirect.com/science/article/pii/
S0378437104002080.

Daniel Friedman. On economic applications of evolutionary game theory. Journal of Evolutionary Economics,
8(1):15–43, Mar 1998. ISSN 1432-1386. doi: 10.1007/s001910050054. URL https://doi.org/10.1007/
s001910050054.

Drew Fudenberg and Lorens A Imhof. Imitation processes with small mutations. Journal of Economic
Theory, 131(1):251–262, 2006.

G.Stenberg. Selectivity in infant social referencing. Infancy, 14:457–473, 2009.

Laura Hindersin, Bin Wu, Arne Traulsen, and Julian Garćıa. Computation and simulation of evolutionary
game dynamics in finite populations. Scientific Reports, 9(1):6946, May 2019. ISSN 2045-2322. doi:
10.1038/s41598-019-43102-z. URL https://doi.org/10.1038/s41598-019-43102-z.

Moshe Hoffman, Sigrid Suetens, Uri Gneezy, and Martin A Nowak. An experimental investigation of evolu-
tionary dynamics in the rock-paper-scissors game. Scientific reports, 5:8817, 2015.

Gerhard Jaeger. Applications of game theory in linguistics. Language and Linguistics Compass, 2(3):406–
421, 2008. doi: 10.1111/j.1749-818X.2008.00053.x. URL https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1749-818X.2008.00053.x.

Dominic D. P. Johnson, Pavel Stopka, and Stephen Knights. The puzzle of human cooperation. Nature, 421
(6926):911–912, 2003. doi: 10.1038/421911b. URL https://doi.org/10.1038/421911b.

M.Webster K.Laland, N.Atton. From fish to fashion: experimental and theoretical insights into the evolution
of culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 366:958–968, 2011.

Amaury Lambert. Probability of fixation under weak selection: A branching process unifying approach.
Theoretical Population Biology, 69(4):419 – 441, 2006. ISSN 0040-5809. doi: https://doi.org/10.1016/j.
tpb.2006.01.002. URL http://www.sciencedirect.com/science/article/pii/S0040580906000116.

Shishi Luo. A unifying framework reveals key properties of multilevel selection. Journal of Theoretical
Biology, 341:41 – 52, 2014. ISSN 0022-5193. doi: https://doi.org/10.1016/j.jtbi.2013.09.024. URL http:
//www.sciencedirect.com/science/article/pii/S0022519313004542.

10

Akihiko Matsui. On cultural evolution: Social norms, rational behavior, and evolutionary game theory.
Journal of the Japanese and International Economies, 10(3):262 – 294, 1996. ISSN 0889-1583. doi:
https://doi.org/10.1006/jjie.1996.0015. URL http://www.sciencedirect.com/science/article/pii/
S0889158396900155.

M.Chudek, S.Heller, S.Birch, and J.Heinrich. Prestige-biased cultural learning: bystander’s differential
attention to potential models influences children’s learning. Evolution and Human Behavior, 33:46–56,
2012.

Richard E. Michod and Denis Roze. Cooperation and conflict in the evolution of multicellularity. Heredity,
86(1):1–7, 2001. doi: 10.1046/j.1365-2540.2001.00808.x. URL https://onlinelibrary.wiley.com/doi/
abs/10.1046/j.1365-2540.2001.00808.x.

L Molleman, I Pen, and FJ Weissing. Effects of conformism on the cultural evolution of social behaviour.
PLoS ONE, 8(7):e68153, 2013. doi: 10.1371/journal.pone.0068153.

Martin Nowak. Evolutionary Dynamics. Harvard University Press, 2006a.

Martin A. Nowak. Five rules for the evolution of cooperation. Science, 314(5805):1560–1563, 2006b. ISSN
0036-8075. doi: 10.1126/science.1133755. URL https://science.sciencemag.org/content/314/5805/
1560.

Z Patwa and L.M Wahl. The fixation probability of beneficial mutations. Journal of The Royal Society
Interface, 5(28):1279–1289, 2008. doi: 10.1098/rsif.2008.0248. URL https://royalsocietypublishing.
org/doi/abs/10.1098/rsif.2008.0248.

P.L.Harris and K.H.Corriveau. Young children’s selective trust in informants. Philosophical Transactions of
the Royal Society B: Biological Sciences, 366:1179–1187, 2011.

R.Boyd and P.J.Richerson. Culture and the evolutionary process. University of Chicago Press, 1985.

J. Maynard Smith and G. R. Price. The logic of animal conflict. Nature, 246(5427):15–18, 1973. doi:
10.1038/246015a0. URL https://doi.org/10.1038/246015a0.

John Maynard Smith. Evolution and the Theory of Games. Cambridge University Press, 1982. doi: 10.
1017/CBO9780511806292.

Arne Traulsen and Martin A. Nowak. Evolution of cooperation by multilevel selection. Proceedings of
the National Academy of Sciences, 103(29):10952–10955, 2006. doi: 10.1073/pnas.0602530103. URL
https://www.pnas.org/content/103/29/10952.

Arne Traulsen, Noam Shoresh, and Martin A. Nowak. Analytical results for individual and group selection
of any intensity. Bulletin of Mathematical Biology, 70(5):1410, Apr 2008. ISSN 1522-9602. doi: 10.1007/
s11538-008-9305-6. URL https://doi.org/10.1007/s11538-008-9305-6.

Arne Traulsen, Dirk Semmann, Ralf D. Sommerfeld, Hans-Jürgen Krambeck, and Manfred Milinski. Human
strategy updating in evolutionary games. Proceedings of the National Academy of Sciences, 107(7):2962–
2966, 2010. ISSN 0027-8424. doi: 10.1073/pnas.0912515107. URL https://www.pnas.org/content/107/
7/2962.

W.Nakahashi. The evolution of conformist transmission in social learning when the environment fluctuates.
PhD thesis, 2007.

11

Supporting Information
DyPy: A Python Library for Simulating Matrix-Form Games

Anjalika Nande, Andrew Ferdowsian, Eric Lubin, Erez Yoeli, Martin Nowak

1 Introduction
This SI includes additional useful information on how to use the package and provides example code for a
slightly more complicated game - Repeated Prisoners’ dilemma - than the Prisoners’ Dilemma in the main
text. In addition, we provide the code that was used in the conformity and Rock-Paper-Scissors examples
in the main text. We also focus on how to define a start state, incorporate the effect of mutations and list
additional graphing options that are provided in the package.

2 Defining the start state
The ‘start state’ corresponds to the initial frequencies of strategies that can be specified by the user. It is
a multidimensional list of size m× n× l where m is the number of groups, n is the number of player types
and l is the number of player strategies. For example, in the Prisoners’ Dilemma game defined in the main
text, the start state would be of the following form in the absence of group selection,

start_state = [[[60,40]]]

This means that in a total population of 100 individuals, at the start there are 60 individuals playing
‘Cooperation’ whereas 40 individuals are playing ‘Defection’. The order of the two strategies is dependent
upon how it was defined in the game. The start state can be included when using any of the simulation
methods, for example,

s.simulate(num_gens=100,pop_size=100,start_state=[[[60,40]]])

3 Mutations
We provide functionality to include the effects of mutations in the two stochastic dynamics - Wright-Fisher
and Moran. The user can either provide a universal mutation rate which applies to each strategy or a list of
mutation rates with each strategy of each player getting its own mutation rate. For example, in a 2 player
game with Player 1 having 2 strategies and Player 2 having 3 strategies, the mutation matrix takes the form,

mu = [[0.1,0.2],[0.1,0.2,0.3]]

and can be specified while initializing the GameDynamicWrapper or VariedGame classes, for example,

s = GameDynamicsWrapper(PrisonersDilemma,Moran,\
dynamics_kwargs={‘mu’:[[0.1,0.2],[0.1,0.2,0.3]]})

1

ar
X

iv
:2

00
7.

13
81

5v
1

 [
q-

bi
o.

PE
]

 2
7

Ju
l 2

02
0

4 Repeated Prisoners’ Dilemma
Different approaches have been utilized to stabilize cooperation in the standard Prisoners’ Dilemma (Nowak,
2006). ‘Repeated’ games is the idea that the game is not played just once but is repeated several times
between two players. For such games, there are strategies such as the Tit-for-tat (TFT) strategy that are
stable against invasion by Always defect (ALLD) (Axelrod, 1980a,b). TFT starts with cooperation and
then plays for the subsequent rounds whatever strategy the opponent played in the previous round. We
can simulate a population playing TFT, ALLD and Always Cooperate (ALLC) and show that TFT helps
maintain cooperation in the absence of mistakes. In this section we illustrate the results of the simulations.
See the next section for how the game (RepeatedPD) is coded along with how we defined the expected
equilibrium states. We first simulate the population using the Replicator dynamic,

s = GameDynamicsWrapper(RepeatedPD,Replicator)
s.simulate(num_gens = 100, pop_size = 100, graph=dict(area=True,options=[‘smallfont’]))

The result of this simulation is Figure 1A which shows that TFT helps ALLC dominate ALLD. Next,
we check the robustness of this final state in the presence of stochasticity.

s = GameDynamicsWrapper(RepeatedPD,Moran)
s.simulate_many(num_iterations = 100 , num_gens = 2000, pop_size = 100,\
class_end = True, graph=dict(area=True,options=[‘smallfont’]))

This command returns a text output with the proportion of each equilibrium.

{‘Cooperative Equilibrium’: 0.98,‘Non Cooperative Equilibirum’: 0.02}

The plot in Figure 1B is the average over all iterations for each generation.

A B

Figure 1: Evolution of strategies for a population playing repeated Prisoners’ Dilemma strategies: ALLD,
ALLC and TFT. A) Under Replicator dynamic for 100 generations. B) Under the Moran dynamic for 2000 generations,
averaged over 100 iterations. The population size was set to 100 for both the simulations.

5 Code for the Repeated Prisoners’ Dilemma
Always Defect (ALLD), Always Cooperate (ALLC) and Tit-for-tat (TFT) belong to the set of reactive
strategies and the entries in the payoff matrix for these three strategies playing each other, Eq.(1) can be
calculated via well established methods (Nowak, 2006).

ALLD ALLC TFT

ALLD P T P
ALLC S R R
TFT P R R

 (1)

2

Here T > R > P > S are the standard payoffs associated with the basic Prisoners’ Dilemma game from
Eq.(2) in the main text. We define the ‘Cooperative’ equilibrium as the state of the system where ALLD
can’t invade TFT. ALLD can invade TFT if the fitness of an ALLD player is higher than that of TFT. In
Evolutionary Game Theory, fitness is defined to be proportional to the payoffs. So if xALLD, xALLC and
xT F T are the frequencies of ALLD, ALLC and TFT players respectively, the fitness of each player is given
by,

fALLD ∝ PxALLD + TxALLC + PxT F T (2)
fALLC ∝ SxALLD +RxALLC +RxT F T (3)
fT F T ∝ PxALLD +RxALLC +RxT F T (4)

The state of the system can be ‘Cooperative’ as long as fALLD < fT F T . Solving this equation we find
that the system is in a cooperative equilibrium when,

xALLC <
(R− P)
(T −R)xT F T (5)

When this condition is not met, ALLD can invade TFT and this leads to a ‘Non-Cooperative’ equilibrium
that is dominated by defectors. Once the payoff matrix and the equilibria are defined, we can code the game
as follows.

from games.game import SymmetricNPlayerGame
class RepeatedPD(SymmetricNPlayerGame):

DEFAULT_PARAMS = dict(R=3, T=5, S=0, P=1, bias_strength=0)
STRATEGY_LABELS = (‘ALLD’, ‘ALLC’, ‘TFT’)
EQUILIBRIA_LABELS = (‘Cooperative Equilibrium’, ‘Non Cooperative Equilibirum’)

def __init__(self, R, T, S, P, bias_strength):

payoff_matrix = ((P, T, P),
(S, R, R),
(P, R, R))

super(RepeatedPD, self).__init__(payoff_matrix, 1, bias_strength)

@classmethod
def classify(cls, params, state, tolerance):

R = getattr(params,"R")
T = getattr(params,"T")
S = getattr(params,"S")
P = getattr(params,"P")

tolerance = (R-P)/(T-R)
if state[0][1] <= tolerance * state[0][2] :

return 0 # Cooperative Equilibrium
elif state[0][1] > tolerance * state[0][2] :

return 1 # NonCooperative Equilibrium
else:

return super(RepeatedPD, cls).classify(params, state, tolerance)

3

6 Code for the Conformity Example
In order to compare our results qualitatively with (Molleman et al., 2013), we chose the ‘bias function’ to
be linear in frequency, φ(x) = 2x (‘bias scale’ is set to 2) such that conformity is modelled as a coordination
game.1 For this modified Prisoners’ Dilemma, the fitness of each player which is proportional to their payoffs
is given by,

fC ∝ (RxC + SxD)(1− γ) + 2γxC (6)
fD ∝ (TxC + PxD)(1− γ) + 2γxD (7)

with T > R > P > S as the usual payoffs associated with the Prisoners’ Dilemma. As in the previous
example, we define the ‘Cooperative’ equilibrium of the system to be when defectors can’t invade cooperators
that is, fC > fD. Solving Eq.(6) this leads to the following conditions for a cooperative equilibrium on the
frequencies of the two strategies,

xC > xD
(P − S)(1− γ) + 2γ
(R− T)(1− γ) + 2γ (8)

with the caveat that such an xC exists only when (R− T)(1− γ) + 2γ > 0 since xC , xD > 0. Exact code
used to generate the game:

from games.game import SymmetricNPlayerGame
class PrisonersDilemma(SymmetricNPlayerGame):

DEFAULT_PARAMS = dict(R=3, S=0, T=5, P=1, bias_strength=0.0, bias_scale=2)
STRATEGY_LABELS = (‘Cooperate’, ‘Defect’)
EQUILIBRIA_LABELS = (‘Cooperation’,‘Defection’)
def __init__(self,R,S,T,P,bias_strength,bias_scale):

payoff_matrix = ((R,S),(T,P))
super(PrisonersDilemma, self).__init__(payoff_matrix, 1, bias_strength,\
bias_scale)

@classmethod
def classify(cls, params, state, tolerance):

R = getattr(params,"R")
T = getattr(params,"T")
S = getattr(params,"S")
P = getattr(params,"P")
bias = getattr(params,"bias_strength")

Avoid division by zero
if bias !=0.5:

ratio = ((P-S)*(1-bias) + 2*bias)/((R-T)*(1-bias) + 2*bias)
else:

ratio = 1

if ratio > 0:
if state[0][0] > state[0][1]*ratio:

return 0 # Cooperation
elif state[0][0] <= state[0][1]*ratio:

return 1 # Defection
else:

return super(PrisonersDilemma, cls).classify(params, state, tolerance)
1‘bias function’ is defined in the ‘get expected payoff’ method of the ‘PayoffMatrix’ class.

4

if ratio < 0:
return 1

7 Rock-Paper-Scissors
Rock-Paper-Scissors (RPS) is a three strategy game where there is a cyclic domination of strategies. Rock
beats scissors which beats paper which in turn beats rock. Any symmetric three strategy game with cyclic
domination characterizes a RPS game (Nowak (2006)). We use the following payoff matrix in our simulations,

R P S

R 0 −0.2 2
P 2 0 −0.2
S −0.2 2 0

 (9)

The Nash equilibrium for this game is a mixed strategy with a uniform distribution over the pure strate-
gies, (1

3 ,
1
3 ,

1
3). The code used to generate the game,

class RPS(SymmetricNPlayerGame):
DEFAULT_PARAMS = dict(a1=0.2, a2=0.2, a3=0.2, b1=2, b2=2, b3=2)
STRATEGY_LABELS = (‘Rock’, ‘Paper’, ‘Scissors’)
EQUILIBRIA_LABELS = (‘Nash’,)
def __init__(self, a1, a2, a3, b1, b2, b3):

payoff_matrix = ((0, -a2, b3),(b1, 0, -a3),(-a1, b2, 0))
super(RPS, self).__init__(payoff_matrix,1)

@classmethod
def classify(cls, params, state, tolerance):

threshold = 1/3
pop_rock = state[0][0]
pop_paper = state[0][1]
pop_scissors = state[0][2]

if abs(pop_rock-threshold) <= tolerance and \
abs(pop_paper-threshold) <= tolerance and \
abs(pop_scissors-threshold) <= tolerance:

return 0 #Nash
else:

return super(RSP, cls).classify(params, state, tolerance)

If the population converges to the Nash equilibrium, the ‘classify’ method returns ‘Nash’, otherwise it
returns ‘Unclassified’. We set the tolerance to 0.03. The code used to generate the single iteration of the
simulation,

s = GameDynamicsWrapper(RSP,WrightFisher)
s.simulate(num_gens=100, pop_size=500, start_state = [[[300,100,100]]],\
graph = dict(area=True,options=[‘smallfont’]))

We use this start state to show that the fixed point is stable even if the dynamics start further from the
equilibrium point. The code used to generate the multiple iterations of the simulation in the presence of
mutations,

s = GameDynamicsWrapper(RSP, WrightFisher, dynamics_kwargs={‘mu’:0.03})
s.simulate_many(num_iterations = 500, num_gens = 100, pop_size=500, \
graph = dict(area=True,options=[‘smallfont’]))

5

8 Other Graphing Options
The library provides other graphing methods which were not included in the main text. We use the basic
Prisoners’ Dilemma game to showcase how these methods may be used.

8.1 Histogram
We provide the option to plot histograms of the distribution of the strategies for each player at the end of
the iterations in the method ‘simulate many’. For example, the code below gives the output in Figure 2.

s = GameDynamicsWrapper(PrisonersDilemma, WrightFisher,dynamics_kwargs={‘mu’:[0.1,0.1]})
s.simulate_many(num_iterations = 100, num_gens = 100, histogram = True)

Figure 2: Distribution of the final population sizes for the strategies in the Prisoners’ Dilemma under Wright-
Fisher dynamics. The results are for 100 iterations each of 100 generations, for a populations size of 100. This was in the
presence of a 10% mutation rate for both the strategies.

8.2 Contour Plots
We can create a contour plot by varying two payoffs, say R and T from the Prisoners’ Dilemma. We use the
‘vary 2params’ helper function to vary two parameters of the game instance. Defection always dominates
cooperation as long as T > R (by definition of a Prisoners’ Dilemma) so we include the line T = R in the
contour plots (Figure 3) for reference.

s = VariedGame(PrisonersDilemma, WrightFisher)
s.vary_2params(‘R’, (0, 10, 20), ‘T’, (0, 10, 20), num_iterations=50,\
num_gens=100, graph=dict(type=‘contour’, lineArray=[(0, 10, 0, 10)]))

The game is a Prisoners’ Dilemma when T > R and ‘Defection’ is the only Nash equilibrium. When
R > T since S < P , the system is bistable (Nowak, 2006). In this case, depending upon the initial conditions
the system will either converge to cooperation or defection.

8.3 3D Wire Plots
We can also produce 3D wire frame plots (Figure 4), on varying 2 parameters of the game. Varying R and
T as above, the only change in the code is to specify the type of graph to be created.

6

Figure 3: Contour plots of the distribution of equilibria on varying the parameters R and T using Wright-
Fisher dynamics. The game is a Prisoners’ Dilemma when T > R with ‘Defection’ as the only Nash equilibrium. ‘Unclassified’
corresponds to a mixed equilibrium where both strategies co-exist in the population. Simulations were run for 100 generations
with results for each pair of R [0, 10] and T [0, 10] values averaged over 50 iterations. The solid black line corresponds to R = T .

s = VariedGame(PrisonersDilemma, WrightFisher)
s.vary_2params(‘R’, (0, 10, 15), ‘T’, (0, 10, 15),num_iterations=50,\
num_gens=100, graph=dict(type=‘3d’, lineArray=[(0, 10, 0, 10)]))

The x and y axis correspond to the parameters being varied whereas the equilibrium proportion is plotted
on the z axis.

7

Figure 4: 3D Wire plots of the distribution of equilibria on varying R and T in the Prisoners’ Dilemma using
Wright-Fisher dynamics. Simulations were run for 100 generations with results for each pair of R [0, 10] and T [0, 10] values
averaged over 50 iterations.

8

References
Robert Axelrod. Effective choice in the prisoner’s dilemma. The Journal of Conflict Resolution, 24(1):3–25,

1980a. ISSN 00220027, 15528766. URL http://www.jstor.org/stable/173932.

Robert Axelrod. More effective choice in the prisoner’s dilemma. Journal of Conflict Resolution, 24(3):
379–403, 1980b. doi: 10.1177/002200278002400301.

L Molleman, I Pen, and FJ Weissing. Effects of conformism on the cultural evolution of social behaviour.
PLoS ONE, 8(7):e68153, 2013. doi: 10.1371/journal.pone.0068153.

Martin Nowak. Evolutionary Dynamics. Harvard University Press, 2006.

9

